向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

研究人员发现一种新型碳同素异形体 性能比GaN、石墨烯强

Alfields的研究人员发现一种新的碳同素异形体——protomene,据称比GaN更适用于光电组件,也比碳纳米管和石墨烯适用于更多半导体组件。

根据一家公司总部位于阿布扎比的Alfields LLC.声称,该公司的研究人员发现了一种新的碳同素异形体——protomene,它可能比氮化镓(GaN)更适用于光电组件,同时也比碳纳米管(CNT)和石墨烯适合更多的半导体组件应用。13resmc

针对这个主题的研究就发表在最近一期的科学杂志《Carbon》上,研究人员在文中探讨这种新型碳同素异形体的结构,并认为它很可能发展成为促进电子产业重大进展的材料。13resmc

致力于这项研究的国际专家研究团队是由Alfields LLC.的Mohamed Al Fahim和Rashid al Fahim两兄弟为主导。该计划同时也是阿拉伯联合酋长国(United Arab Emirates)政府因应2017年9月启动“第四次工业命”(Fourth Industrial Revolution)政策所需创新与未来技术的一部份。13resmc

美国核子化学家兼Alfields首席科学家Larry Burchfield说:“protomene碳同素异形体及其重要的特性,一直是具前瞻性思维的创新人员和制造商在近几十年来的愿望清单,而今我们将真正实现这种材料。”13resmc

Burchfield说:“我们目前已经跳脱‘梦想’阶段了,最终为半导体、光电、涂料和节能等领域带来了十分有利的影响力。”。13resmc

Alfields说,这可能是自诺贝尔奖得主Robert F. Curl Jr.、Sir Harold W. Krotoand和Richard E. Smalley发现富勒烯(fullerenes)以来的第一个新的碳同素异形体类型,同时也是自2010年诺贝尔奖得主Andre Geim与Konstantin Novoselov发现石墨烯以来最重大的进展。13resmc

研究人员并进一步与位于阿布扎比的哈利法科技大学(Khalifa University of Science and Technology)合作,共同展开实际制造protomene的下一阶段计划。13resmc

Protomene经证实是一种极具潜力的新式直接能隙半导体。其能隙(band gap)十分接近于GaN——在室温下,GaN的能隙约为3.4eV。因此,protomene拥有与GaN类似的半导体特性,使其能够应用于具有高击穿电压的高功率和/或高频电子组件。 13resmc

180322_ND_allotrophe_400
价电带(虚线部份)顶部周围能量区的Protomene电子状态(来源:Carbon)13resmc

不过,由于GaN是一种二位的化合物,在其晶体生长过程中不易控制成份,而protomene则是单元素的碳同素异形体,对于缺陷的掌握度可能比GaN更好。由于间隙幅度位于可见光谱的蓝色端附近,protomene可望在光电组件中找到新的应用,例如产生LED的蓝光或紫外光(UV),或是作为光学用的UV滤光器。13resmc

此外,以能隙的观点来看,protomene可能比碳纳米管和石墨烯更适用于许多半导体组件中。事实上,无论是金属还是半导体,目前制造碳纳米管的障碍之一就在于对其进行控制。相反地,Protomene预计将会是一种随温度变化的半导体。13resmc

探索新的同素异形体

protomene的热膨胀很可能会发生在板间的结合上。当温度升高时,从低温半导体的48原子单元结构,转变为高温金属的24原子单元结构特性,可能发生结构相变。随着相变的发生,能隙将迅速收敛,其速度甚至比在钻石和硅中的衰变和热膨胀更快得多。13resmc

因此,这种相变将提供灵敏的温度控制光学滤波器。最终并转变为protomene的高温无二聚体金属,同时还具有潜力实现温度控制光电开关等应用。13resmc

几十年来,追求新的碳同位素,已成为日益积极活跃的研究领域了。碳同素异形体具有各种结构和电子特性,促进了广泛的研究兴趣。13resmc

碳通常具有三种极具竞争力的不同轨域混成类型——sp、sp2和sp3。这可让碳原子分别以多种不同的方式相互结合。13resmc

sp3的配置产生具有绝缘特性和高刚度的三维(3D)网络,如立方体和六角形钻石。相对地,sp (线性)和sp2 (平面)混成则实现灵活的结构,如卡拜(carbine)和石墨烯,这些结构通常具有小的电子带间能隙或甚至是金属特性。中间混成也很常见,例如富勒烯和纳米管。13resmc

protomene是一种基于结合sp2和sp3混成的全新稳定碳结构,其中24个原子中的6个能够采用完全平面的sp2几何形状,因而能从平面中移出,而与下一个垂直堆栈晶格中的配对原子形成相对较弱的键。这种额外的键合形成将使总能量每键降低约1eV,从而引起电子特性的明显改变。13resmc

编译:Susan Hong13resmc

(国际电子商情微信ID:esmcol,本文由Aspencore旗下ESM姐妹媒体《电子工程专辑》授权编译自EE Times,谢绝转载)13resmc

二维码13resmc

Write
本文为国际电子商情原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Nitin Dahad
EE Times欧洲记者。Nitin Dahad是EE Times的欧洲记者。
  • 微信扫一扫,一键转发

  • 关注“国际电子商情” 微信公众号

您可能感兴趣的文章

  • 宽禁带半导体的“左右互搏”

    “受俄乌冲突与疫情反复影响,消费电子等终端市场需求有所下滑,但应用于功率元件的第三代半导体在各领域的渗透率仍然呈现持续攀升之势,绿色能源、800V汽车电驱系统、高压快充桩、消费电子适配器、数据中心及通讯基站电源等领域的快速发展,推升了SiC/GaN功率半导体市场需求。”

  • 3D打印为什么能代表未来?

    3D打印和增材制造的潜力如此巨大,以至于它可能会颠覆我们所知的制造业。最明显的变化将是本地化生产,这可能会接替或取代传统的分布式制造。另一个重大变化是个性化定制的能力。

  • 第三代半导体加速爆发,SiC、GaN产业化进度如何?

    2009-2019年期间,全球共关闭了100座晶圆代工厂。恰逢最新一轮全球规模芯片缺货潮,半导体产业遭遇了前所未有的危机。坚持IDM模式的厂商开始改变观念,2021年英特尔决定把部分芯片外包给台积电,这个变化被业内视为委外代工已成趋势,但在SiC和GaN领域,似乎有着不一样的市场表现……

  • 宽禁带功率半导体的竞争格局及趋势分析

    随着各国相继明确“碳中和”目标,宽禁带功率半导体在消费电子、汽车电子、工业自动化、5G通信等领域将迎来前所有未的黄金发展期。作为宽禁带半导体中率先落地的材料,SiC(碳化硅)、GaN(氮化镓)的市场现状如何?本文从SiC、GaN产业链出发,梳理并分析了相关企业的融资进度、竞争格局及发展趋势。

  • SiC与GaN助力宽禁带半导体时代到来!

    近年来,碳化硅(SiC)和氮化镓(GaN)等宽禁带半导体得到了广泛的关注。与硅相比,这两种化合物能承受更高的频率和电压,可以制造出更复杂的电子产品。现在,SiC和GaN功率器件已成为趋势,问题在于它们到底有多少的市场机会。

  • 对标三星S7?国产手机欲拼8级防水,顺带为代工厂省点钱

    三星今年推出的新旗舰Galaxy S7可谓是叫好又叫座,其防水功能更是赚足了眼球。无独有偶,即将发布的iPhone 7亦传出会增强防水性能的消息。前有三星后有苹果,以后手机都要防水了吗?国产手机会不会跟进?在日前举行的深圳国际电子展上,有不少针对电子设备的防水新技术,而一些防水厂商表示,他们已经跟一些国内电子厂商达成了合作,其中不乏几家手机大厂。

相关推荐

可能感兴趣的话题