随着极紫外光微影(EUVL)将在今年大量使用,以及高数值孔径(NA)版本的开发,现在正是预先准备好下一步的时候了。
现在正是再次探讨缩短波长并了解其优缺点的时候了。我们不知道13.5nm和1nm之间的最佳选择,所以我将这种新技术选项称为Blue-X——其波长大约介于深蓝极紫外光(EUV)微影和X射线之间。wWbesmc
缩短波长是持续扩展光学微影技术的一种选择,着重在短于13.5nm波长的光源和光学元件,这些将在不久的未来实现这一技术。wWbesmc
升级至0.5的更高数值孔径(NA),将必须付出十分昂贵的代价。不仅工具成本将倍增至2.35亿欧元,较大尺寸的扫描仪也需要更庞大的费用来打造更大规模的晶圆厂。wWbesmc
一旦采用高数值孔径作业,在考虑更高数值孔径带来更高成本的同时,也一并想到高数值孔径的多重曝光,这样可能更有意义。然而,缩短波长不仅能缩减数值孔径,从而有助于提高解析度,同时降低工具成本以及功耗要求。wWbesmc
以k1系数约0.3的单次曝光为例,在13.5nm波长时,0.33 NA达到12nm的解析度,而在0.5 NA时可提高到8nm。业界一度关注的波长为6.7nm,但由于我们无法解决其功率问题,使得该选项缺乏频宽而被放弃了。wWbesmc
相较于采用6.7nm波长,从0.33升级至更高NA有其优点:它让我们能保持相同的功率、多层(ML)和光罩等基础设施。毕竟,同时承担太多挑战并不是个好办法。wWbesmc
我们已经了解如何根据雷射驱动电浆(LPP)、光学元件、污染控制和光罩等方面调整功率了,接下来将能把这些学问应用于专为较短波长设计的扫描仪上。因此,我认为现在正是重新审视缩短波长选项的时候了。我建议我们在考虑其他技术选择的优点和缺点时,一路持续关注至1nm。wWbesmc
光源和光学挑战wWbesmc
过去,我们已经探索了11nm和6.6nm或6.7nm光源可能成为EUVL的较短波长了。氙(Xenon)可以提供11nm,而针对6.X-nm,鋱(Tb)和釓(Gd)则被视为LPP光源的材料源。wWbesmc
藉由增加目标材料的原子量Z,我们可以持续从LPP光源取得越来越短波长的光子。这些高Z材料并没有单一波长可发射,但有一组非常接近的未辨识转换阵列(UTA)波长。wWbesmc
总发射强度将对应于UTA的总振荡器强度,必须针对每一个可能的UTA评估其潜在的转换效率。wWbesmc
这是一个很有意思的领域,提供了几种有趣的功能,如晶片的K边缘、碳窗(carbon window)和水窗(water widow)。针对水窗(X射线波长范围在2.34-4.4nm之间)近期已经有许多关于显微镜应用的开发。wWbesmc
然而,在产生这种数百瓦较短波长光子方面存在若干挑战。最大的挑战之一在于驱动雷射所需的功率。针对6.X-nm,所需功率估计约为100kW,而13.5nm则需要~40kW。wWbesmc
我曾经见过65kW CO2雷射的设计,但由于功率要求很高,此时可能值得研究其他替代雷射技术了。俗称「星战计划」(Star Wars)的美国政府战略防御计划目前采用的是1微米100kW雷射。wWbesmc
另一个具有吸引力的选择是美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Laboratory;LLNL)的1.2微米雷射。它可以调整至300kW,同时保持小于CO2雷射的尺寸。wWbesmc
当然,我们还必须关注在1.2微米时的转换效率(CE)。1微米Nd:YAG固态雷射的CE低于10微米CO2的CE。因此,在我们确定100kW驱动雷射的最佳选择之前,必须先弄清楚几件事。wWbesmc
传输效率和光阻剂wWbesmc
为了保持与当今扫描仪类似的传输效率,我们将会需要类似于现有的功率和ML反射率。我怀疑如果我们牺牲一部份在这些区域缩短波长取得的增益,以缩短的波长来看,功率要求和数值孔径是否就能随之降低。wWbesmc
6.7nm的ML反射率可能会类似于13.5nm,因而其成为一个理想选择。而对于其他波长的ML,获得高反射率的挑战将十分困难。wWbesmc
在Blue-X区域探索的各种不同波长中,由于生物应用的前景,水窗(2.34-4.4nm波长)已经成为最主要的研究之一。例如OptiXfab最近展示用于水窗的ML收集器提升10倍性能,但反射率仍然不足30%,所以我们还有很长的路要走。wWbesmc
对于较短波长区域的ML,介面粗糙度似乎是提高反射率的限制之一。针对ML研究的新化学物质可望有助于我们将反射率提高到可接受的数值。wWbesmc
正如一位ML专家所说的,「我们喜欢有利的挑战……还记得我们在13.5nm达到的成果吧?」对此,我将满怀期待。让我们看看在拥有强大UTA下,较短波长可以为我们带来什么。wWbesmc
编译:Susan HongwWbesmc
(参考原文:EUV Roadmap Needs Extension,by Vivek Bakshi, EUV Litho, Inc.)wWbesmc
微信扫一扫,一键转发
关注“国际电子商情” 微信公众号
本系列文章拆分为上、下两篇,上篇聚焦晶圆代工厂(Foundry),下篇关注垂直整合制造商(IDM)。
国际电子商情讯,在近日的2025年北美技术论坛上,台积电正式揭晓了其革命性的A14(1.4nm级)制程工艺技术细节,标志着半导体制造技术迈入全新阶段。
英特尔正处在一个关键转折点。该公司刚刚公布的财务业绩凸显了这家半导体巨头面临的严峻挑战。
台积电承认近期关税影响带来的压力。
净销售额达到此前预期。
国际电子商情讯,4月1日上午,意法半导体微信公众号(ST)发文表示,公司与英诺赛科签署了一项氮化镓(GaN)技术开发与制造协议,提升氮化镓功率解决方案的竞争力和供应链韧性。
与第二名的市场份额进一步缩小。
本文从观察到的两个有趣的市场与宏观趋势出发,来观览这高速发展、属于人类技术与生产力变革史的后续四五十年。
半导体行业再现“A吃A”
半导体产业本身是一个需要国际合作且产业链条极长的行业。一颗在美国设计的芯片,最终销往中国,从原材料到成品芯片,可能涉及大约10个国家和地区:有的负责提供材料和解决方案,有的
重申对中国市场的承诺。
“关税大棒”逼出来的投资?
迈入五月,上海、深圳、广州三地集成电路产业新基金相继成立,进一步完善了区域产业生态。与此同时,全国多地也在
2025年初,国内消费级AI/AR市场迎来增长。
Canalys(现并入Omdia)最新研究显示,2025年第一季度,东南亚智能手机市场同比下滑3%,为连续五个季度实现年增长后的
近日,闻泰科技剥离产品集成业务的消息引发业界高度关注。
上海发力半导体产业!
国产芯片行业传来重磅消息,传闻已久的#小米造芯 一事终于得到证实。
近日,#华为再次出手,目标瞄准机器人领域。
据外媒报道,印度电子暨资讯科技部长Ashwini Vaishnaw于5月14日宣布,印度内阁已批准印度HCL集团与鸿海集团合资
全球半导体产业格局加速重构背景之下,越南凭借地缘优势与政策红利,加速布局半导体封测产业。这一过程中,既有越
进入5月,手机面板价格延续分化趋势,a-Si面板因智能终端市场回暖呈现量价齐升态势;LTPS产线由于车载显示需求的
根据TrendForce集邦咨询最新半导体封测研究报告,2024年全球封测(OSAT)市场面临技术升级和产业重组的双重挑战
2025年第一季度,笔记本电脑出货量同比增长6.6%。由于OEM厂商为应对潜在关税的影响而提前补充库存,美国市场的
从扩展开放组合兼容性实验室功能,到推出全新的存储平台,以及更广泛的SSD认证,西部数据成为现代数据中心架构在
应用于智能家居、工业自动化和物联网市场
随着AI数据中心的快速发展、电动汽车的日益普及,以及全球数字化和再工业化趋势的持续,预计全球对电力的需求将
轮趣科技(WHEELTEC)是国内自动驾驶及相关技术教育领域的龙头企业,专注于智能控制、自动驾驶、机器人及其零配件
节省空间的设计为恶劣环境提供汽车级高浪涌电流保护
2025年5月20日19:00,iQOO在北京蓝盒子艺术中心正式推出年度旗舰Neo10 Pro+。
联想在“天禧AI生态春季新品超能之夜”发布会上,推出覆盖手机、平板的全场景AI终端矩阵,并展示天禧AI生态的全
2025年度电子产业两大标杆性展会相继举办,第105届中国电子展(CEF)于4月9-11日在深圳会展中心(福田)9号馆重磅登场
作为国产高性能RISC-V内核MCU芯片设计企业,先楫半导体的产品涵盖微控制器芯片及其解决方案,已贯通从感知、通
微雪电子(Waveshare)成立于2006年,是聚焦电子开发硬件与解决方案的国家级高新技术企业。秉持 “让开发更简单
纳芯微今日重磅推出基于全国产供应链、采用HSMT公有协议的车规级SerDes芯片组,包括单通道的加串器芯片NLS911
2025上海车展充满科技范儿,更加聚焦用户价值与安全性。智能化、电动化进一步深入融合,呈现辅助驾驶成熟量产化
点击查看更多
北京科能广告有限公司深圳分公司 版权所有
分享到微信
分享到微博
分享到QQ空间
推荐使用浏览器内置分享
分享至朋友圈