广告

当工业4.0遇见AI:现在的智能制造有多“智能”?

当工业4.0遇见AI:现在的智能制造有多“智能”?

工业制造在标准、互联等领域始终是很特殊的,现在谈工业4.0与AI是否为时过早?AI在工业4.0时代是否真的在发挥作用,以及究竟发挥到何种程度?这是我们期望以由上至下的方式,从工业制造AI解决方案、AI芯片、EDA,以及实际应用几个层面,来窥见当下工业制造的AI技术现状…

意大利有家公司叫ROJ,这家企业专注于针对工业领域的电子技术,产品典型如基于ARM Cortex-M/A、FPGA的工业板和模块。这家公司有个特色,是“基于客户软件、硬件需求来提供个性化解决方案”。其典型客户如Mares——这是个生产潜水装备的企业,包括潜水表。Mares的特色也在满足不同客户的产品定制化需求。而“定制化”就意味着产品生产周期必须短,制造响应速度必须快,而且可能某一款产品的需求量还不大。实际上越来越多的制造商开始转向这种量不大,但品种多样的生产模式,这也是工业4.0的重要特点。HQiesmc

这在传统的生产模式中是不可想象的,直到数字工厂、智能制造开始出现:不同小订单之间的不同需求,生产设备可以很方便地通过数字操控的方式实现转变和协调——当然还有IT/OT融合、TSN的出现、各类统一与融合标准在工业领域的出现,都是实现这种操作的必要条件。不过这些不是本文要探讨的核心。HQiesmc

ROJ在智能制造时,所选方案的其中一个关键是Valor Material Management材料管理系统——这是来自西门子数字工业软件的一部分。ROJ首席执行官Franco Oliaro曾表示:材料需要在正确的时间、正确的位置提供,而制造现场的停工往往是因为材料没有到位。数字化的材料管理系统能做的就是材料分发,在需要材料的时候确保其准备就绪。HQiesmc

这个例子实际只是数字化生产和工业4.0的基本应用。当生产设备本身变得越来越复杂,越来越智能,就会产生海量数据。当这些数据熔于一炉后做数据分析,不仅用以了解过去的生产状况,同时利用机器学习还能提高未来生产质量、降低制造成本,即是AI技术对工业4.0的推动了。HQiesmc

工业制造在标准、互联等领域始终是很特殊的,现在谈工业4.0与AI是否为时过早?AI在工业4.0时代是否真的在发挥作用,以及究竟发挥到何种程度?这是我们期望以由上至下的方式,从工业制造AI解决方案、AI芯片、EDA,以及实际应用几个层面,来窥见当下工业制造的AI技术现状。HQiesmc

AI智能制造解决方案能做什么?

“传感器数据速率正在持续增长。大部分客户现如今的工厂传感器数据采集速率还在1Hz,但越来越多的芯片制造商收集速率达到了10Hz、100Hz。晶圆厂的数据量级现在开始进入PB级别,而不再是MB或者TB。”BISTel首席执行官W.K. Choi表示,“客户需要更出色的分析来驱动产品质量提升;工程师则期望更快地进行根因分析,近实时地(in near real time)、准确地解决影响良率和工程生产的问题。”这能说明什么问题?BISTel是一家提供智能制造解决方案的韩国企业,解决方案离实际应用总是靠的更近。HQiesmc

以半导体制造为例,我们先来看一个例子:晶圆制造发生不良率高的问题时,常规手法是工程师们调查并讨论,这个过程一般需要很久。如W.K. Choi所说,实现数字生产的工厂,传感器数据采集速率现如今已经很高了。针对晶圆生产不良率高的问题,可观察的参数至少包括温度、振动、压力等各项指标。如果针对所有相关指标做监测,那么分析难度自然可以得到降低。在这个例子中,不少晶圆片靠近边缘位置出现问题,因此成为“bad”晶圆。HQiesmc

AI19120401.jpgHQiesmc

BISTel的HMP(Health Monitoring & Prediction)在数据追踪中,系统列出总共6个导致良率问题的最优关联度参数,其中前两个分别是蚀刻工序的最后一步,电流发生激增;以及氦气值明显降低(图1)。蚀刻流程的最后一步就是氦气分离,这一例的“根因”就是在分离过程中,托盘与晶圆边缘接触,产生小范围火花——所以电流出现了激增,与此同时托盘某些氦气口堵塞造成氦气值降低。HQiesmc

在晶圆制造良率问题的“根因分析”这一例中,至少能够表现持续增长的“数据速率”是怎么回事,以及将原本需要以天、周为单位计的根因分析时间缩短到分钟、小时级别内。而AI技术在此处的核心,即如何利用海量数据做分析,并得出结论。HQiesmc

“具备AI能力的智能应用,可让系统和流程实现自动化,让客户得以近实时地针对每天的生产问题,做出检测(detection)、分析(analyses)和预测(prediction)解决方案。”W.K. Choi说,“现在我们在生产流程中,融入了更多强有力的AI分析,能够从这些流程中学习。我们随后就会把这些新的智能,应用到知识库(knowledge base)中。”

原创
本文为国际电子商情原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
黄烨锋
欧阳洋葱,编辑、上海记者,专注成像、移动与半导体,热爱理论技术研究。
  • 微信扫一扫,一键转发

  • 关注“国际电子商情” 微信公众号

  • 当车载摄像头用上AI,传统CIS还能担“重任”吗?

    机器学习自2012年起热门至今,AI如今的发展也如火如荼。机器学习是计算机视觉可应用的一种解决方式。而当车载摄像头用上AI时,对CIS技术要求也随之改变,传统CIS还能担当“重任”吗...

  • 转型不易?传华为拟将云端业务一分为二...

    国际电子商情8日消息,日媒最新报道声称,一份华为近期发出内部文件显示,这家中国电信巨头计划解散仅成立了14个月的核心云端和人工智能(Cloud&AI BG)业务,考虑将相关人力和资源合并到其他业务部门...

  • AI时代,全局曝光CIS芯片助力机器视觉应用

    “在人工智能(AI)时代,我们做的很多决策、处理,都通过机器来实现。这些CPU、GPU是怎么看待世界的?该如何让它们感觉到关键的信息?实际上,这是图像传感器应该做的事情。”在ASPENCORE 3月18日举办的2021年中国IC领袖峰会上,思特威(上海)电子科技股份有限公司副总经理欧阳坚针对图像传感器在机器视觉领域的应用做了精彩分享。

  • 国产“芯”力量!30家AI芯片厂商调研报告

    Aspencore旗下《国际电子商情》姊妹媒体《电子工程专辑》分析师团队对中国本土的AI芯片设计公司进行了第一手调查和网络汇编整理,从众多AI芯片设计厂商中挑选30家,从核心技术、代表产品、典型应用场景等多个维度进行了分析。无论云端训练和推理、边缘计算还是终端AI,AI都需要高能效的算力支持,而AI芯片无疑是输送算力的硬件保障...

  • 18亿元人民币!燧原科技宣布完成C轮融资

    国际电子商情5日讯,燧原科技今日宣布完成C轮融资18亿元人民币,由中信产业基金、中金资本旗下基金、春华资本领投,腾讯、武岳峰资本、红点创投中国基金等多家新老股东跟投。

  • AI芯片:在魔幻的时代找到希望

    2020年之于AI芯片,是既魔幻,但又充满希望的一年。

近期热点

广告
广告

EE直播间

更多>>

在线研讨会

更多>>